ON THE MAXIMUM AND MINIMUM FIRST REFORMULATED ZAGREB INDEX OF GRAPHS WITH CONNECTIVITY AT MOST k
نویسندگان
چکیده
The authors Miličević et al. introduced the reformulated Zagreb indices [1], which is a generalization of classical Zagreb indices of chemical graph theory. In this paper, we mainly consider the maximum and minimum for the first reformulated index of graphs with connectivity at most k. The corresponding extremal graphs are characterized.
منابع مشابه
Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملToughness of the Networks with Maximum Connectivity
The stability of a communication network composed of processing nodes and communication links is of prime importance to network designers. As the network begins losing links or nodes, eventually there is a loss in its effectiveness. Thus, communication networks must be constructed to be as stable as possible, not only with respect to the initial disruption, but also with respect to the possible...
متن کاملRelationship between augmented eccentric connectivity index and some other graph invariants
The augmented eccentric connectivity index of a graph which is a generalization of eccentric connectivity index is defined as the summation of the quotients of the product of adjacent vertex degrees and eccentricity of the concerned vertex of a graph. In this paper we established some relationships between augmented eccentric connectivity index and several other graph invariants like number of ...
متن کاملOn the Number of Spanning Trees of Graphs
We establish some bounds for the number of spanning trees of connected graphs in terms of the number of vertices (n), the number of edges (m), maximum vertex degree (Δ1), minimum vertex degree (δ), first Zagreb index (M 1), and Randić index (R -1).
متن کامل